亚博正网

一、基本情況

王秀榮,華南農業大學教授、博士生導師。主要從事植物營養生理、植物營養遺傳和根系生物學方面的教學、科研和推廣工作。主攻方向為作物養分高效的有益微生物共生研究。針對南方酸性土壤上養分效率低和酸鋁毒,以及農田土壤重金屬污染毒害問題,嘗試利用有益微生物共生途徑提高作物養分效率,以及耐酸鋁和抗重金屬毒害能力。近年來在國內外專業核心刊物上發表論文50多篇參與編寫學術專著1部。獲得國家發明專利2項,獲得廣東省科學技術獎二等獎1項。2012年入選廣東省高等學校“千百十工程”第七批省級培養對象。

 

二、主要學術兼職

中國植物營養與肥料學會植物營養生物學專業委員會委員(2016-2021年)

 

三、教育經歷

學習經歷:

19947月,西北農林科技大學土壤與植物營養專業,獲農學學士學位

19977月,華南農業大學作物營養與施肥專業,獲農學碩士學位

200812月,華南農業大學植物營養學專業,獲農學博士學位

進修經歷:

20026-20036月,香港中文大學生物系,進行秈稻轉基因的合作科研。合作者:Samuel S.M. Sun教授

20069-12月,澳大利亞阿德萊德大學(University of Adelaide地球與環境科學學院進行大豆與菌根共生作用方面的合作研究。合作者:Sally Smith 教授

20133-20143月,美國南達科塔州州立大學(South Dakota State University)生物與微生物系進行叢枝菌根共生系統中資源分配方面的合作研究。合作者:Heike Bücking 教授

 

四、工作經歷

19977-20006月,華南農業大學資源環境學院,助教

20007-200611月,華南農業大學資源環境學院,講師

200612-201111,華南農業大學資源環境學院,副教授、碩士生導師

201112-至今,華南農業大學資源環境學院,教授、博士生導師

 

五、招生方向

學術型博士:植物營養學

學術型碩士:植物營養生理與遺傳;根系生物學;肥料學;作物營養與施肥

專業型碩士:植物營養

 

六、科研項目

1)根瘤菌與菌根促進作物高效利用磷的機制,國家重點研發計劃項目子課題(項目號2017YFD0200200/2017YFD0200203),2017-2021,100萬元,主持

2)菌根誘導表達的蔗糖轉運蛋白調控大豆-菌根真菌共生系統中碳分配的機理研究,國家自然科學基金(31672237),2017-202072萬元,主持

3)磷高效轉基因大豆新品系培育,廣東省省級科技計劃項目(2016A020210067),2016-201815萬元,主持

4GmPAP4GmPAP33調控大豆-AM共生體內磷再利用的生理和分子機制,國家自然科學基金(31372126),2014-201778萬元,主持

5叢枝菌根真菌提高大豆耐酸鋁能力的生理機制解析,廣東省高等學校高層次人才項目(粵財教【2013246),2014-201625萬元,主持

6)大豆紫色酸性磷酸酶基因家族參與磷高效利用的生理和分子機理解析,國家自然科學基金(30971853),2010-201233萬元,主持

7)抗逆磷高效轉基因大豆新品(種)系培育,農業部轉基因生物新品種培育科技重大專項課題(2009ZX08004-007B),2009-2012114萬元,主持

8)烤煙根系發育與養分吸收和煙葉品質形成的關系研究,云南省煙草專賣局(公司)科技項目(06A05)2007-200910萬元,主持

 

七、論著一覽

1)        Qin J, Wang H, Cao H, Chen K, Wang X*. 2020. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean. Mycorrhiza

2)        Li CC, Zhou J, Wang X*, Liao H*. 2019. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant, Cell & Environment, 42: 2015-2027

3)        Zhao S, Chen A, Chen C, Li C, Xia R, Wang X*. 2019. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiologia Plantarum, 166: 712-728

4)        Kafle A, Garcia K, Wang X, Pfeffer PE, Strahan GD, Bücking H. 2019. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. Plant, Cell & Environment, 42: 270-284

5)        Cui GJ, Ai SY, Chen K, Wang XR*. 2019. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicology and Environmental Safety, 171: 231-239

6)        Li CC, Li CF, Zhang HY, Liao H, Wang X*. 2017. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Physiologia Plantarum, 159(2): 215-227

7)        Wang G, Sheng L, Zhao D, Sheng J*, Wang X* and Liao H. 2016. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Frontiers in Plant Science, 7:1901. doi: 10.3389/fpls.2016.01901

8)        Liu X, Zhang C, Wang X, Liu Q, Yuan D, Pan G, Sun SSM, Tu J. 2016. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biology, 16: 147. DOI: 10.1186/s12870-016-0837-x

9)        Wang X, Zhao S, Bücking H. 2016. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphorus efficiency. Annals of Botany, 118 (1): 11-21

10)    Zhang S, Zhou J, Wang G, Wang X*, Liao H. 2015. Role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Applied Microbiology and Biotechnology (IF5=3.81). 99:10225–10235

11)    Xie J, Zhou J, Wang XR*, Liao H. 2015. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system. Journal of Integrative Plant Biology, 57: 477-485. doi: 10.1111/jipb.12243

12)    Li CF, Zhang HY, Wang XR*, Liao H. 2014. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Plant Cell Reports, 33:1921-1932

13)    Zhou J, Xie JN, Liao H, Wang XR*. 2014. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiologia Plantarum, 150(2):194-204

14)    Tian J, Wang XR, Tong YP, Chen XP, Liao H. 2012. Bioengineering and management for efficient phosphorus utilization in crops and pastures. Current Opinion in Biotechnology, 23:1-6

15)    Li CC, Gui SH, Yang T, Walk T, Wang XR*, Liao H. 2012. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of Botany, 109: 275-285

16)    Wang XR, Pan Q, Chen FX, Yan XL, Liao H. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 21: 173-181

17)    Wang XR, Shen JB and Liao H. 2010. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 179: 302-306

18)    Wang XR, Yan XL and Liao H. 2010. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Annals of Botany, 106: 215–222

19)    Wang XR, Wang YX, Tian J, Lim BL, Yan XL and Liao H. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 151: 233-240.

20)    Cheng FX, Cao GQ, Wang XR, Zhao J, Yan XL and Liao H. 2009. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chinese Science Bulletin, 54(3): 412-420.

 

九、聯系方式

單位電話:020-85281829Email: 亞博正網:xrwang@shanja.cn


寄語學生

一分耕耘一分收獲!